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ABSTRACT

One of the common assumptions in control of large interconnected systems is that
models of subsystems are to a large extent known to a designer, and an essential mod-
eling uncertainty resides in the interconnections. Current decentralized adaptive control
schemes take no advantage of this fact. In this paper, an algorithm is presented in which
adaptation of local feedback gains is in the a direction which compensates for the unknown
interconnections, while exploiting the knowledge about the subsystems. As a result, we
broaden considerably the class of interconnected systems for which decentralized adapta-
tion is feasible.
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I. INTRODUCTION

In modeling of large systems, it is standard to divide the system into a number of
interconnected subsystems. A main advantage of this approach is that the modeling pro-
cess is used to reflect our knowledge about the isolated parts of the system and that, as
a consequence, the essential uncertainty resides in the interconnections. Control design
is greatly simplified since the large problem has been broken into several smaller ones.
Decentralized controllers have been shown to be robust to a wide range of nonlinear and
time-varying elements in the subsystem interactions [1,2].

In spite of this progress in decentralized design, there still remain situations where
fixed decentralized control laws may not provide the desired degree of robustness. For this
reason, the adaptive control methods for single-input, single-output (SISO) systems 3]
have been extended to decentralized systems [4-6]. These schemes are designed to stabilize
an interconnection of uncertain or completely unknown subsystems. The ignorance of
subsystemm dynamics appears to be an artifice, however, which was used to make the
centralized adaptive algorithms work in a decentralized setting, rather than to reflect
a genuine modeling uncertainty about the subsystems. Furthermore, this artifice may
unnecessarily prevent extensions of decentralized adaptive control to the broader class of
interconnected multi-input, multi-output (MIMO) subsystems.

The purpose of this paper is to explore the possibility of adaptively controlling known
MIMO subsystems so as to stabilize the overall system, or track a reference model, in spite
of the uncertain interconnections between the subsystems. The adaptive schemes presented
here, like those in [4-6|, are based on model-reference adaptive control. In this approach,
parameters of the controller are varied to try to match each closed-loop subsystem to a
reference model’s behavior. We note that in the decentralized model reference scheme, the
overall model, consisting of isolated submodels, differs in structure from the interconnected
large-scale system, hence no variation of parameters will allow exact model matching.
Instead we rely on high gain feedback to cancel the effect of interconnection disturbances
and force the system to closely follow the reference signals.

II. PROBLEM STATEMENT

We consider the problem of controlling N interconnected subsystems

N
Si: ;= A;z; + Bju; + Z Az, , 1t €N (2.1)
7=1
where z;(t) € R™ is the state and u,;(t) € RP is the input to §; at time ¢t € R, and

N={1,2..., N}. A;, B;, and A;; are constant matrices of appropriate dimension. The
overall system of equations (2.1) can be represented in block matrix form as

S: £=Apz+ Acz~ Bu , (2.2)
where z = (], 2T, ..., 22T, u = (uT, T, .., ul)T, Ap = diag{4;, Aq, ..., AN},
B = diag{Bl, Bg, ey BNfl, and AC = rAijf“

We shall assume that the systems S is partially unknown, and thus some form of
adaptive control is required. Furthermore, we assume that all of the modeling uncertainty
is in the interconnection matrix, Ac, but that the subsystem matrices A, and B, are
known.



The control laws are restricted to be decentralized, that is each controller operates on
its local subsystem exclusively, with no exchange of information between subsystems. In
the adaptive controllers to be analyzed in this paper, this means that not only the feedback
control law, but also the adaptation mechanism, must involve local information only.

As is well known, even in the non-adaptive case, decentralized stabilization of S is not
in general possible with an arbitrary Ac. We shall assume a certain structure to A¢c which
makes stabilization possible. In the first algorithm presented, we require that the A;; be
factorable as

Ai]' = B,‘Hl'j , 1.1 < N (2.3)

where H;; € RP{*" are bounded but otherwise arbitrary matrices. This is equivalent to
requiring that:
R(Ay) € R(B)) , .)€ N (2.4)

where R(-) denotes the range space of the indicated matrix.

We will be applying the direct adaptive control philosophy in the schemes presented in
this paper. In the direct approach, the feedback gain vector is adapted directly, as opposed
to a two step process of system identification followed by control design. Direct adaptive
control has been more successful than the indirect method for large-scale systems because
the difficult intermediate step of subsystem identification is avoided. In the direct method,
a reference model must be specified:

E = Aif,‘ +Bir;, , 1€ N (2.5)

where z,(t) € R™, and r;(t) € RP is a bounded piecewise continuous reference signal.
Equivalently:

= Api+ Br (2.6)
T _ _ _ _
where 7 = (a‘:{, a‘:{, e :T:II;,) , T = (r{, rg, e r%)T , Ap = diag{A4;}, B = diag{B,}.

The matrices A; and B, are computed as follows. Since we know the subsystem plant
models, we can require that B; = B;, 1 € N. We then must provide a feedback matrix
K; € RPi*™ which satisfies

A;=A,-BK, , i=N . (2.7)

so that the A;, ¢ € N, are stable. These K, will be known to the designer. The condi-
tion (2.7) is called the model matching condition, and K; the model matching gains. It is
well known that choice of K; can be used to produce arbitrarily stable A,.

The state feedback law implied by (2.7):
u; = —Rllii +r; (28)

stabilizes the isolated subsystems, although it may not stabilize the system as a whole due
to the effect of interconnecting signals, A;;z,. Note that this is quite a different situation
than in ordinary model reference adaptive control, where it is assumed that there exist
feedback gains that will exactly match the plant to a stable reference model. Decentralized
adaptive controllers instead must rely on increasing the stability of the local subsystems
(through, possibly, high gains) in order to stabilize to the overall system.



III. ADAPTIVE SCHEME

The adaptive scheme to be presented is based on increasing optimal feedback gains
until overall stability is achieved. The optimal* feedback gain for subsystem 1 is:
K!=R'BTP, | (3.1)

where R, € RPi*Pi R, = RIT > 0, and P, is the positive definite solution to the algebraic
Liapunov equation:

PA +ATP = -Q, | (3.2)
where Q; = er > 0. The control to be used for subsystem 1 is:

= Kz, -~ o;Kle; +1, (3.3)
where ¢; = z, — Z,;. Equivalently:

u=-Kz—-aK'e+r (3.4)
where e = g el el, ..., e:'];,)T o = diag{a;lp,}, K = diag{K,, Ks, ..., Ky}, K' = diag{ K],
Kj, ..., Ky}, and I represents the p; X p; identity matrix. The «; are parameters to be
locally adapted Combmmg the control (3.4) with the plant (2.2), we get:

i=(Ap - BK)z - aBK'e+ Br . (3.5)

Using (2.6) an error differential equation can be written
¢ =Ape — aBK'e + Ace ~ AcT . (3.6)
For preliminary analysis, consider the unforced case, r;(t) = O for all £. This implies
.T."(t) = 0.
Theorem 3.1

If we use adaptation laws
& = 7;1e$P,-BiRi_1B1TPiei , o;{0) >0 (3.7)
where ~; > 0, then e(t) — 0 as t — oo and the a;(t) are uniformly bounded.
Proof. Use the candidate vector Liapunov function
vi(ei, o) = €] Pie; + via? (3.8)

The symbol &; represents the difference between «;(t) and a “sufficiently stabilizing” con-
stant a]. Taking the time derivative:

S T T '
v, = —€; Q;6; — 2a,e; P,B K e,

N
+2¢T P,B; Y Hije;
7=1

+ Z&ieg‘PiBiR;lBg‘Piei

* K!is the optimal state feedback gain for the isolated, model-matched, subsystem
only. In the interconnected case, K| is a suboptimal decentralized feedback gain.
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using K! = Rl._lBl-TPi and &; = a; — o, and completing the square:
5 < — €l (Qi + afPl-BiRi“lB;‘-’"PO €,
(3.10)

+ar H EN RY? Hye, }2
v |l : 7€
1=1

Let
Vieo)= Y v , (3.11)

=1
and compute
. —-1
V < —eTQe ~ eTHTRY 2o " R'?He
(3.12)

IA

[_Am (@) + Ang (H7RE) mfxx{a:_l}} lell?

where Ap,(-) and Apz(-) represent the minimum and maximum eigenvalues of the indicated

matrix, respectively. Therefore, V < 0if a* is chosen sufficiently large. This implies (e, a)

goes to the invariant set, ||e|| = 0, and both e(t) and «(t) are uniformly bounded. This
completes the proof.

The proposed adaptive scheme has the advantage that it is very simple, involving only
one adaptive parameter per subsystem. Also, the subsystems are allowed to have multiple
control inputs, a relaxation of a constraint to single input systems imposed by earlier
decentralized adaptive controllers.

IV. TRACKING

In the case where model tracking is required, z(t) is not identically zero and therefore
acts as a disturbance term through the interconnections to drive the error model (3.6).

¢ =Ape —aBK'e+ Ace - AcE . (3.6)

This disturbance prevents exact model following but we can make the error bounded. We
modify the adaptation law slightly and obtain the following theorem.

Theorem 4.1

If we use the adaptation laws
&; =~ |l P,B;R;' BT Pie, — UiaiJ ; o(0) >0 (4.1)
where o; > 0, then the solution (e(t), «(t)) is globally ultimately bounded.

Proof. Let v;(e;, o;) = ¢, Pie; + ’ﬁ&?. Along (3.6) and (4.1):
¥; < — el Qe

+ 2¢] P.B,H,e, — aje] P,B,R;' B Pe,

(4.2)
+2¢F P,B;H;z; - a:e;rPiBiRi_lBg‘Piei
2

- ~
— 20;0;0] — 0,0



Completing squares

. T . <Y T T ~2

(4.3)
LT T p .~ *
+ o z; H’I, RLH1I1+U1CI1’

1

Choosing V = Zfil v; we find that V < 0 if (e(t), a(t)) lies outside a bounded
region. This implies e(t) and «a(t) are globally ultimately bounded and proves the theorem.

Corollary 4.1

Tracking error, e(t), converges to a residual set, 3, = {e € R": |le| < £}, and £ can
be made as small as desired through choice of o;.
Proof. From (4.3) we can see that
2

£ < a2 (Q) sup 2| M(HTRH)(a®) ! + 56* (4.4)

where a* = min,(a}), & = max,(a}), & = max;(0;). We choose o* large enough to make

the first term small, and & small enough to make the second term small, so (4.4) is satisfied
for any given £ > 0. Note that the small & will lead to possibly large values for a(t) which
is intuitively reasonable since we would expect tighter tracking to require higher feedback
gains.

V. OUTPUT FEEDBACK

If only the outputs of subsystems are available for feedback then some form of dynamic
output feedback compensator is required. Under certain conditions, the decentralized
observer presented in [7] can be used. These conditions are summarized below.

The measured subsystem outputs are given by:
yi = Ciz; (5.1)
where y; € R™i. We construct a dynamic compensator of the form
4 = Fiz; + Gy, — Gouy (5.2)
u; = (a; + 1)(Yiy, + Z;2,) (5.3)

where z; € R™, r; < n;, and F;, 1« € N are stable matrices.

For ease in presenting the argument below, let us choose the reference model of (2.5)
so that K; = K| = Ri_lB?Pi (this gain is known to stabilize the isolated subsystem).

Therefore the gains would be K; = (a; + 1)K] if the local state variables were available
for feedback.



In order for output feedback eventually to have the same effect as state feedback we
require that

u;(t) — K;z,(t) ast — oo (5.4)
which can be satisfied if
zi(t) — Tyz,(t) . (5.5)
and we choose Y; and Z; so that
C,
v.z) 7| =K (5.6)

The estimator will converge as in (5.5), subject to the observer dynamics (5.2}, system

dynamics (2.1), and interconnection structure (2.3) if and only if F;, T}, G, and G; be
selected so that

FT,-T;A; +G,C;, =0 , (5.7)
T.B;=0 |, (5.8)
G;i=0 |, (5.9)

as was shown in [7]. Furthermore, Y; and Z, must exist to satisfy (5.6). That is, it is
necessary and sufficient that

N (K> N ([ﬂ) _ N(T) N N(C) (5.10)

where N(-) denotes the null space of the indicated matrix. Constructive methods for
computing F;, T}, G;, Y;, and Z; (if they exist) are given in :7|.

When these conditions can be satisfied, output feedback through the dynamic com-
pensators, (5.2), (5.3), is assymptotically equivalent to state feedback, and the control law
u; = (a4 1) (Y;y; + Z;z;) can be used with the adaptive schemes presented in this paper.

VI. CONCLUSION

We have provided adaptive control schemes for decentralized large-scale systems that
exploit a-priort knowledge about the subsystems and adapt to compensate for uncertainty
in the interconnections. Such schemes utilize the high gain feedback approach which re-
quires that interconnection structure to be restricted to a certain class, that is, intercon-
necting signals must be in the range space of the control input.

The adaptive decentralized regulator in this context has been proven globally asymp-
totically stable, and the model tracking algorithm can be made to follow a reference signal
to any degree of accuracy required.

Improvements over earlier schemes include a simplified adaptation algorithm and the
ability to handle MIMO subsystems, using decentralized state estimators for output feed-
back if necessary.
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